Duals of Orphan-Free Anisotropic Voronoi Diagrams are Triangulations
نویسندگان
چکیده
Given an anisotropic Voronoi diagram, we address the fundamental question of when its dual is embedded. We show that, by requiring only that the primal be orphan-free (have connected Voronoi regions), its dual is always guaranteed to be an embedded triangulation. Further, the primal diagram and its dual have properties that parallel those of ordinary Voronoi diagrams: the primal’s vertices, edges, and faces are connected, and the dual triangulation has a simple, closed boundary. Additionally, if the underlying metric has bounded anisotropy (ratio of eigenvalues), the dual is guaranteed to triangulate the convex hull of the sites. These results apply to the duals of anisotropic Voronoi diagrams of any set of sites, so long as their Voronoi diagram is orphan-free. By combining this general result with existing conditions for obtaining orphan-free anisotropic Voronoi diagrams, a simple and natural condition for a set of sites to form an embedded anisotropic Delaunay triangulation follows. 1 ar X iv :1 10 2. 36 73 v2 [ cs .C G ] 2 7 M ar 2 01 2
منابع مشابه
On the Embeddability of Delaunay Triangulations in Anisotropic, Normed, and Bregman Spaces
Given a two-dimensional space endowed with a divergence function that is convex in the firstargument, continuously differentiable in the second, and satisfies suitable regularity conditionsat Voronoi vertices, we show that orphan-freedom (the absence of disconnected Voronoi regions)is sufficient to ensure that Voronoi edges and vertices are also connected, and that the dual isa ...
متن کاملPractical Conditions for Well-behaved-ness of Anisotropic Voronoi Diagrams
Recently, simple conditions for well-behaved-ness of anisotropic Voronoi diagrams have been proposed. While these conditions ensure well-behaved-ness of two types of practical anisotropic Voronoi diagrams, as well as the geodesic-distance one, in any dimension, they are both prohibitively expensive to evaluate, and not well-suited for typical problems in approximation or optimization. We propos...
متن کاملMultiple Covers with Balls II: Weighted Averages
Voronoi diagrams and Delaunay triangulations have been extensively used to represent and compute geometric features of point configurations. We introduce a generalization to poset diagrams and poset complexes, which contain order-k and degree-k Voronoi diagrams and their duals as special cases. Extending a result of Aurenhammer from 1990, we show how to construct poset diagrams as weighted Voro...
متن کاملOrphan-Free Anisotropic Voronoi Diagrams
We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.
متن کاملVector Weighted Anisotropic Voronoi Diagrams and Delaunay Traingulations
We introduce a weighting scheme for Voronoi diagrams that has preferred directions. This generalizes the concept of weighted Delaunay triangulations and overcomes some of the difficulties of using multiplicative anisotropic weight systems. We discuss properties that make these weighting schemes attractive.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1102.3673 شماره
صفحات -
تاریخ انتشار 2011